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Abstract

Sufficient conditions are given for global controllability of the bilinear

system

m
& x(t) = [A(©)4] By (®]x(6) + c(®)u(®)

and a related class of nonlinear systems. An example is provided to illustrate

the simplicity of these conditions for certain bilinear systems.
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I. Introduction

The purpose of this note is to study the controllability property of a

class of bilinear systems. Sufficient conditions are derived for the global
controllability of this class of systems. These results are then generalized

to several other classes of nonlinear systems.

B R S

* Consider the bilinear system

m
%; x(t) = [A(t)+i§l Bi(t)ui(t)] x(t) + c(t)u(t), telt ,t,;1 (1)

where x(t) is an nxl state vector, u(t) is an mxl input vector with components

uss A, Bi’ C are nxn, nxn, nxm matrix-valued functions respectively.

Given (xo,xl) as the initial and final state, respectively, of (1). The
problem is to find a continuous input function u(t), defined on [to,tl], which
steers system (1) from X to X, at tl. The usual definitions of globally com-
letely and totally controllable are assumed [1]. The global controllability i

property of a class of bilinear systems using bounded controls was reported in il
[2] in which rather sophisticated conditions were derived to insure global con-
trollability. Here, a completely different approach is used to derive suffi-
cient conditions for global controllability.

Denote Cm[to,tl] as a Banach space of continuous R"-valued functions on

[to,tl] with the uniform norm ||u(t)|| = max max Iui(t)l. where |ui(t)| is the

1 ts[to’tll

absolute value of ui(t), the element of u(t). Define the norm of a continuous

m
nxm matrix-valued function F(t) by ||F(t)|| = max ] max IFi.(t)l, where
i 3=1 teft_,t.1
o’ 1l i
the Fij are elements of F. Section y
For each fixed element ve Cm[to,tll, the solution to the parameterized system ™™ g |
d T ——
3F x(t) = [A(H)+ [ B, (t)v ()] x(t)+C(t)u(t) (2) B
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with x(to) = x_ is given by

t

x(t) = ‘¢(t,t°;v)xo + J ®(t,s;v)C(s)u(s) ds (3)

t
o

where ¢(t,to;v) is the state transition matrix associated with the matrix

m
ACt)+ T B (t)v (D).

i=1
Define a controllability matrix G by
it
G(to,t;v) 2 I d(t,s;v)C(s)C'(s)o'(t,s;v) ds (4)
t
o

where prime denotes the matrix transpose operation. Obviously, G(to,t;v) is

symmetric and nonnegative-definite.

II. Main Result

Theorem 1: The bilinear system (1) is globally a) completely controllable at

to’ or b) totally controllable, if the following conditions are satisfied:
(1) c(t) has a continuous first derivative with respect to t,
(2) ¢(t,t°;v) is bounded on [to,tl] x Rm,A(-) and Bi(°) are continuous,
(3) there exists a positive constant € such that

inf det G(to,tl;v) 3 €, (s)
veCm[to,tl]

a) for some t, > t s or b) for all t, and all t, > t,.

1 1
Proof: The proof of the theorem is based on Schauder's fixed-point theorem.
For each fixed element Gecm[to,tll, consider the control function u(t) for

te[to,tl] defined by

u(t) = C'(t)f'(tl’t‘V)G-l(to’tl‘v)[x1'°(t1’to‘v)”o] s (6)




where O(t,to;v) is defined as in (3). It should be noted that by hypothesis (3)
G-l(to,tl;v) is well-defined in the above expression. With this control, (3)

can be rewritten as

T
x(tyv) = @(t,to;v)xo+ J @(t,s;v)C(s)C'(s)@'(tl,s;v) .
LS
» 6TH(t_,t 3v)dslx -e(t ,t svIx ] . (7)

It is easily seen that x(t) in (7) satisfies both boundary conditions at t=t
and t=t1.
Now the right side of (6) can be viewed as an operator P(v)(t).

Define the nonlinear mapping P(+) by
-1
P(v)(t) = c'(t)o'(tl,t;v)G (to,tl;v)[xl-¢(tl,t°;v)xol.

Obviously, P is continuous in t By the uniform continuity of ¢(t,to;v) in t.
Therefore, P maps Cm[to,tl] into itself. It can also be easily verified by
hypothesis (2) and the definition of ¢(t,t°;v) that P is continuous in v. Con-

sider the subset of Cm[to,tl]:

. ~ . ~
Is {veCm[to,tl]:||v|| < K1,||v(t)-V(t)|| < K2|t-t|,v&,ts[to,tl]} )

where Kl and K2 are certain positive constants depending upon A(t), Bi(t), c(t)
and its derivative. It can be easily shown that the image set P(I)C I. Be-
sides, I is closed and convex by this construction. Furthermore, each sequence
{si}.f;(: I constitutes a uniformly bounded equicontinuous family. Hence, by
the ;;zela-Ascoli theorem [3], I is relatively compact and, therefore, compact.
Then, Schauder's theorem [3] can be applied to conclude that P has a fixed
point v* in I, i.e., P(v®)(t) = v*(t). Substitute this fixed point into (6)
and (7). A direct differentiation of (7) with respect to t shows that x(t;v¥)

is a solution to the system (1) with u(t) given by v¥(t).




If condition 3a) holds, v¥#(t) drives system (1) from X, to x, on some inter-

val [to,tl] for all X and x, in R", and system (1) is globally completely con-

1

trollable at t, If condition 3b) holds, we have global total controllability. Q.E.D.
Even though the test of conditions (2) and (3) seems to be formidable, for

certain bilinear systems this can be done quite simply. The next corollary char-

acterizes one such class of bilinear systems which satisfy these conditions.

Consider the fixed bilinear system
d m
ge x(t) = [a +izl B, u, (O)]x(t) + cu(t), telt ,t,]. (8)

Corollary 1: The system (8) is globally totally controllable if

(1) C is nonsingular,

(2) A and Bi (i=1,2...,n) commute with one another,

(3) the Bi are antisymmetric and have only zero, or purely imaginary, eigen-

values with simple elementary divisors.

Proof: Hypothesis (1) implies that C can be replaced by the identity matrix
without loss of generality. The boundedness of 0(t,t°;u) follows from hypo-
thesis (2) and the second part of hypothesis (3). Finally, to test the positive-
definiteness of the controllability matrix (4), we notice that the commutative

property of A and Bi implies
t

m
G(to,t;u) = I ¢A(t,s).n ¢B.(t,s;ui)¢é_(t,s;ui)OA(t,s) ds
t° i=1 1 i

where ¢A(t,t°) and Qh (t’to;ui) denote the transition matrices associated with A

and Biui respectively. Since the Bi are antisymmetric, we have % (t,s;ui)-
i
'°éi(t,s;ui) = I, the identity matrix. Hence,
b
. = ' -
G(to,tl,u) I OA(tl,s)¢A(tl,s) ds = ¢, >0 for t, > tos

t
o




where €a is some constant depending on A, t° and tl.

that the system (8) is globally totally controllable. Q.E.D.

By Theoreml, we conclude

These results can be easily generalized to nonlinear systems consisting of
a bilinear mode and bounded nonlinearities. This is stated in the next theorem.

Consider the nonlinear system

m
& (1) = [A(t)+izl B, (t)u, ()]x()+C(t)u(t)+£(t,x,u).  (9)

Theorem 2: If conditions (1)-(3)a (or b)) in Theorem 1 hold and, furthermore, if
f(t,x,u),fx(t,x,u),fu(t,x,u) are continuous and bounded in [to,tl]anme, then
the system (9) is globally completely (or totally) controllable at t,.
Proof: The proof is similar to that of Theorem 1 except that the Banach space
Cnm[to,tl] of continuous R"xR" matrix valued functions on [to,tl] with the uni-
form topology is considered instead of Cm[to,tll. The details follow similar
arguments as in Wei [4].

Finally, by observing that the boundedness conditions on the system matrix
A(t,x,u) and its partial derivatives listed in [4] can be relaxed by introducing
the boundedness of the transition matrix associated with A, we have the follow-

ing theorem which extends the results of [4]. Given the nonlinear system
é%—x(t) = ACt,x(t),u(t)) + B(t)u(t) + £(t,x(t),ult)) (10)
where @(t,to;x,u), £(t,x,u), fx(t,x,u) and fu(t,x,u) are continuous and bounded
in [to,tl]anme; A(t,x,u), Ax(t,x,u) and Au(t,x,u) are continuous in (to,tl]anme;

B(t) has a continuous first derivative.

Theorem 3: If there exists a positive constant § such that

€

1
inf det I Q(tl,s;z,v)B(s)B'(s)@'(tl,s;z,v) ds 3 6
(z,v)ecnm[to,tll

t
o




a) for some t, > ts or b) for all tg and t, > t then the system (10) is glo-

1 1
bally a) completely controllable at to’ or b) totally controllable.

Example: Consider the bilinear system

g—t %, (£) = x (t) + x,(t)u (£) + u(t)
te[to,T] (11)
&5 %,(1) = x,(t) = % (t)u () + uy(t)

In matrix form, we have

1550 0 1 1 o0
: A(t) = 5 Bl(t) = 2 B2(t) SHOL T C(E) = -
: (o M | =1 0 (o R |

It is easily seen that conditions (1) and (2) in Corollary 1 are satisfied. Also,
Bl is antisymmetric and has purely imaginary eigenvalues *i. Therefore, by

Corollary 1, system (11) is globally totally controllable.

III. Conclusions

//’gﬂ‘\ Sufficient conditions for global controllability of a class of bilinear
and nonlinear systems have been derived. These results shed some light in ap-
plying fixed-point arguments to investigate the controllability of nonlinear

) systems which contain unbounded nonlinearities. An interesting problem is to

link the closedness of the attainable set for commutative bilinear systems &53~

with the conditions obtained here so that an explicit input function can be

derived or computed through iterative schemes.
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